

US Steel - Clairton Coke Works

Largest Coke Plant in Western Hemisphere
12 Coke Batteries (Containing 816 Ovens)

What is (Metallurgical) Coke?

What is (Metallurgical) Coke?

Coal is heat to approximately 2000°F in the absence of air, driving off the volatile constituents and concentrating the carbon into a fuel suitable for blast furnaces

Clairton Coke Works Daily Output

13,000 Tons Blast Furnace Coke

225 Million Cubic Ft³ of Coke-Oven Gas

145,000 Gallons Coal Tar

55,000 Gallons Light Oil

35 Tons Elemental Sulfur

50 Tons Anhydrous Ammonia

Door Emissions

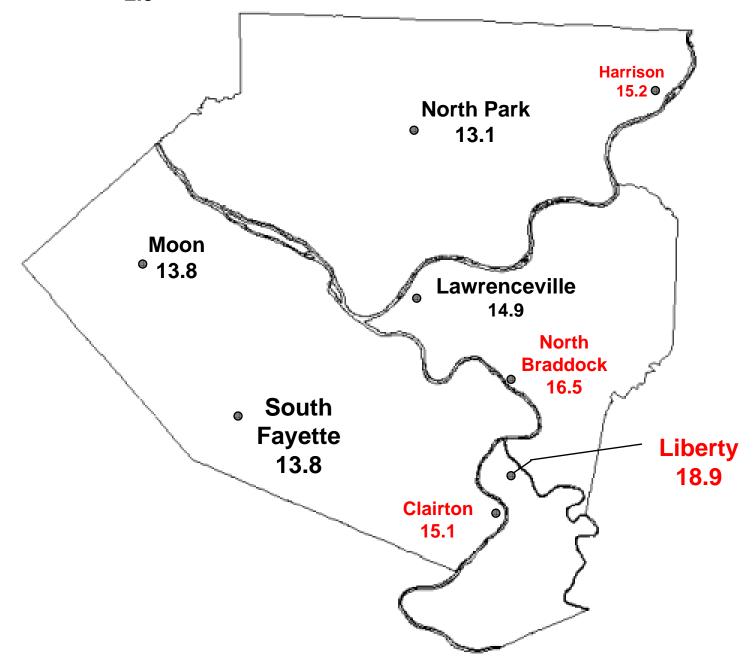
Door Emissions

Pushing Fugitive Emissions

Off-take Piping Emissions

Combustion Stack Emissions

Quenching Emissions


Quenching Emissions

Testing at US Steel shows Particulate Emissions from Quenching are significantly greater than previously estimated.

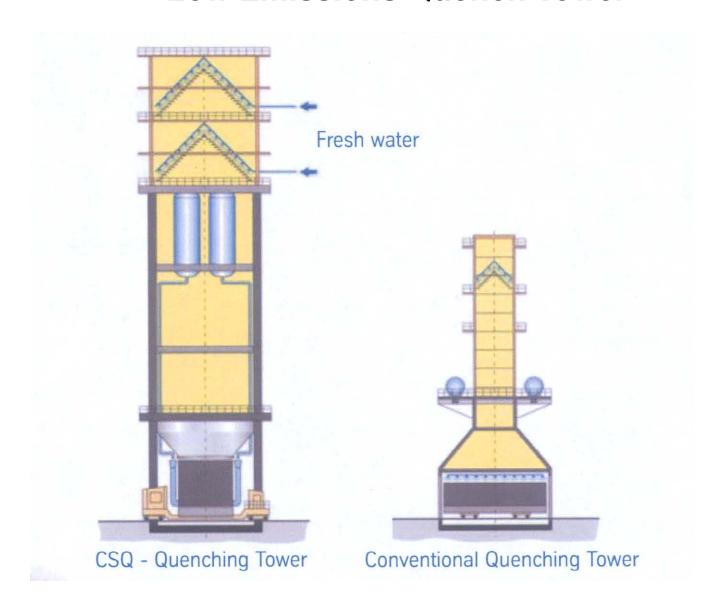
2006 Emissions Inventory (using AP-42): 882 Tons per year Emissions based on Tests: 1992 Tons per year

2007 PM_{2.5} FRM Annual Averages by Site (in µg/m³)

March 2008 Consent Order

\$1.2 Billion Upgrade Project

- Replace Six Older Batteries with 2 New
- Extensive Rebuilds of Other Six
- Will be Completed in Two Phases
- •1st Phase Complete 2012
- •2nd Phase Complete 2014


First Phase: "C" Battery

- Replaces Batteries 7, 8, and 9 (192 ovens)
 with one Larger Unit (84 Ovens)
- •Will Employ PROven® Technology
- Lower-emitting Quench Tower
- Enhanced Pushing Emission Controls

- collecting main under suction
- defined and low oven pressure by
- · variable flow resistance
- almost zero emissions at oven closures

Low Emissions Quench Tower

Pollution Reductions from "C" Battery

<u>Pollutant</u>	Tons/Year
TSP	383
PM_{10}	289
$PM_{2.5}$	211
NO_X	577
SO_2	273
VOC	11
CO	99
H2S	129
TRS	149

Energy Benefits from "C" Battery

- 11% Reduction in Heating Fuel
- ~250 MMBTU/hr in Export Coke Oven Gas
 - Reduces Nat Gas at Other US Steel Plants
 - Reduced CO2 Emissions

"C" Battery Permitting

Jan 1, 2008 - Initial application received

Mar 2-6, 2008 – ACHD personnel inspected Schwelgern coke plant that employed PROven® Technology

May 7, 2008 – Draft Permit made available for public comment

Jun 19, 2008 – Public Hearing held/Comment period closes

Public Comments

- 349 individuals/organizations submitted comments during the period.
- Many made multiple comments
- Comments Resolved and Permit Issued on July 24th
- Currently working on "D" Battery Permit

Summary

- "C" Battery Permit Contains the Lowest Emission Rates of any Coke Battery.
- The PrOven Quench Tower Technology
 Provides a Feasible Method of Reducing PM At Existing Coke Batteries.
- Despite the Significant Reductions in PM_{2.5},
 Attainment in the Liberty/Clairton Area is Not
 Possible without Upwind Reductions.

